
axe Documentation
Release 0.0.1

Kevin Murray

October 18, 2015

Contents

1 Axe Usage 3
1.1 Inputs and Outputs . 3
1.2 The barcode file . 4
1.3 Mismatch level selection . 4
1.4 Single barcode mode . 4
1.5 Combinatorial barcode mode . 5
1.6 The Demultipexing Statistics File . 5

2 Axe’s matching algorithm 7
2.1 Hamming distance matching . 7
2.2 Hamming mismatch tries . 7

3 Indices and tables 9

i

ii

axe Documentation, Release 0.0.1

Axe is a read de-multiplexer, useful in situations where sequence reads contain the barcodes that
uniquely distinguish samples. Axe uses a rapid and accurate algorithm based on hamming mismatch
tries to competitively match the prefix of a sequencing read against a set of barcodes. Axe supports
combinatorial barcoding schemes.

Contents:

Contents 1

axe Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Axe Usage

Axe has several usage modes. The primary distinction is between the two alternate barcoding schemes,
single and combinatorial barcoding. Single barcode matching is used when only the first read contains
barcode sequences. Combinatorial barcoding is used when both reads in a read pair contain independent
(typically different) barcode sequences.

For concise reference, the command-line usage of axe is reproduced below:

USAGE:
axe [-mzc2pt] -b (-f [-r] | -i) (-F [-R] | -I)
axe -h
axe -v

OPTIONS:
-m, --mismatch Maximum hamming distance mismatch. [int, default 1]
-z, --ziplevel Gzip compression level, or 0 for plain text [int, default 0]
-c, --combinatorial Use combinatorial barcode matching. [flag, default OFF]
-p, --permissive Don't error on barcode mismatch confict, matching only

exactly for conficting barcodes. [flag, default OFF]
-2, --trim-r2 Trim barcode from R2 read as well as R1. [flag, default OFF]
-b, --barcodes Barcode file. See --help for example. [file]
-f, --fwd-in Input forward read. [file]
-F, --fwd-out Output forward read prefix. [file]
-r, --rev-in Input reverse read. [file]
-R, --rev-out Output reverse read prefix. [file]
-i, --ilfq-in Input interleaved paired reads. [file]
-I, --ilfq-out Output interleaved paired reads prefix. [file]
-t, --table-file Output a summary table of demultiplexing statistics to file. [file]
-h, --help Print this usage plus additional help.
-V, --version Print version string.
-v, --verbose Be more verbose. Additive, -vv is more vebose than -v.
-q, --quiet Be very quiet.

1.1 Inputs and Outputs

Regardless of read mode, three input and output schemes are supported: single-end reads, paired reads
(separate R1 and R2 files) and interleaved paired reads (one file, with R1 and R2 as consecutive reads).
If single end reads are inputted, they must be output as single end reads. If either paired or interleaved
paired reads are read, they can be output as either paired reads or interleaved paired reads. This applies
to both successfully de-multiplexed reads and reads that could not be de-multiplexed.

3

axe Documentation, Release 0.0.1

The -z flag can be used to specify that outputs should be compressed using gzip compression. The
-z flag takes an integer argument between 0 (the default) and 9, where 0 indicates plain text output
(gzopen mode “wT”), and 1-9 indicate that the respective compression level should be used, where 1
is fastest and 9 is most compact.

The output flags should be prefixes that are used to generate the output file name based on the bar-
code’s (or barcode pair’s) ID. The names are generated as: prefix + _ + barcode ID + _ + read
number + .extension. The output file for reads that could not be demultiplexed is prefix + _ +
unknown + _ + read number + .extension. The read number is omitted unless the paired read
file scheme is used, and is “il” for interleaved output. The extension is “fastq”; ”.gz” is appended to the
extension if the -z flag is used.

The corresponding CLI flags are:

• -f and -F: Single end or paired R1 file input and output respectively.

• -r and -R: Paired R2 file input and output.

• -i and -I: Interleaved paired input and output.

1.2 The barcode file

The barcode file is a tab-separated file with an optional header. It is mandatory, and is always supplied
using the -b command line flag. The exact format is dependent on barcoding mode, and is described
further in the sections below. If a header is present, the header line must start with either Barcode or
barcode, or it will be interpreted as a barcode line, leading to a parsing error. Any line starting with ‘;’
or ‘#’ is ignored, allowing comments to be added in line with barcodes. Please ensure that the software
used to produce the barcode uses ASCII encoding, and does not insert a Byte-order Mark (BoM) as many
text editors can silently use Unicode-based encoding schemes. I recommend the use of LibreOffice Calc
(part of a free and open source office suite) to generate barcode tables; Microsoft Excel can also be used.

1.3 Mismatch level selection

Independent of barcode mode, the -m flag is used to select the maximum allowable hamming distance
between a read’s prefix and a barcode to be considered as a match. As “mutated” barcodes must be
unique, a hamming distance of one is the default as typically barcodes are designed to differ by a ham-
ming distance of at least two. Optionally, (using the -p flag), axe will allow selective mismatch levels,
where, if clashes are observed, the barcode will only be matched exactly. This allows one to process
datasets with barcodes that don’t have a sufficiently high distance between them.

1.4 Single barcode mode

Single barcode mode is the default mode of operation. Barcodes are matched against read one (hereafter
the forward read), and the barcode is trimmed from only the forward read, unless the -2 command line
flag is given, in which case a prefix the same length as the matched barcode is also trimmed from the
second or reverse read. Note that sequence of this second read is not checked before trimming.

In single barcode mode, the barcode file has two columns: Barcode and ID.

4 Chapter 1. Axe Usage

axe Documentation, Release 0.0.1

1.5 Combinatorial barcode mode

Combinatorial barcode mode is activated by giving the -c flag on the command line. Forward read
barcodes are matched against the forward read, and reverse read barcodes are matched against the reverse
read. The optimal barcodes are selected independently, and the barcode pair is selected from these two
barcodes. The respective barcodes are trimmed from both reads; the -2 command line flag has no effect
in combinatorial barcode mode.

In combinatorial barcode mode, the barcode file has three columns: Barcode1, Barcode2 and ID.
Individual barcodes can occur many times within the forward and reverse barcodes, but barcode pairs
must be unique combinations.

1.6 The Demultipexing Statistics File

The -t option allows the output of per-sample read counts to a tab-separated file. The file will have a
header describing its format, and includes a line for unbarcoded reads.

1.5. Combinatorial barcode mode 5

axe Documentation, Release 0.0.1

6 Chapter 1. Axe Usage

CHAPTER 2

Axe’s matching algorithm

Axe uses an algorithm based on longest-prefix-in-trie matching to match a variable length from the start
of each read against a set of ‘mutated’ barcodes.

2.1 Hamming distance matching

While for most applications in high-throughput sequencing hamming distances are a frowned-upon met-
ric, it is typical for HTS read barcodes to be designed to tolerate a certain level of hamming mismatches.
Given these sequences are short and typically occur at the 5’ end of reads, insertions and deletions rarely
need be considered, and the increased rate of assignment of reads with many errors is offset by the risk
of falsely assigning barcodes to an incorrect sample. In any case, reads with more than 1-2 sequencing
errors in their first several bases are likely to be poor quality, and will simply be filtered out during
downstream quality control.

2.2 Hamming mismatch tries

Typically, reads are matched to a set of barcodes by calculating the hamming distance between the
barcode, and the first 𝑙 bases of a read for a barcode of length 𝑙. The “correct” barcode is then selected
by recording either the barcode with the lowest hamming distance to the read (competitive matching)
or by simply accepting the first barcode with a hamming distance below a certain threshold. These
approaches are both very computationally expensive, and can have lower accuracy than the algorithm I
propose. Additionally, implementations of these methods rarely handle barcodes of differing length and
combinatorial barcoding well, if at all.

Central to Axe’s algorithm is the concept of hamming-mismatch tries. A trie is a N-ary tree for an N letter
alphabet. In the case of high-throughput sequencing reads, we have the alphabet AGCT, corresponding
to the four nucleotides of DNA, plus N, used to represent ambiguous base calls. Instead of matching
each barcode to each read, we pre-calculate all allowable sequences at each mismatch level, and store
these in level-wise tries. For example, to match to a hamming distance of 2, we create three tries: One
containing all barcodes, verbatim, and two tries where every sequence within a hamming distance of 1
and 2 of each barcode respectively. Hereafter, these tries are referred to as the 0, 1 and 2-mm tries, for a
hamming distance (mismatch) of 0, 1 and 2. Then, we find the longest prefix in each sequence read in
the 0mm trie. If this prefix is not a valid leaf in the 0mm trie, we find the longest prefix in the 1mm trie,
and so on for all tries in ascending order. If no prefix of the read is a complete sequence in any trie, the
read is assigned to an “non-barcoded” output file.

7

axe Documentation, Release 0.0.1

This algorithm ensures optimal barcode matching in many ways, but is also extremely fast. In situations
with barcodes of differing length, we ensure that the longest acceptable barcode at a given hamming
distance is chosen; assuming that sequence is random after the barcode, the probability of false assign-
ments using this method is low. We also ensure that short perfect matches are preferred to longer inexact
matches, as we firstly only consider barcodes with no error, then 1 error, and so on. This ensures that
reads with barcodes that are followed by random sequence that happens to inexactly match a longer
barcode in the set are not falsely assigned to this longer barcode.

The speed of this algorithm is largely due to the constant time matching algorithm with respect to the
number of barcodes to match. The time taken to match each read is proportional instead to the length of
the barcodes, as for a barcode of length 𝑙, at most 𝑙+1 trie level descents are required to find an entry in
the trie. As this length is more-or-less constant and small, the overall complexity of axe’s algorithm is
𝑂(𝑛) for 𝑛 reads, as opposed to 𝑂(𝑛𝑚) for 𝑛 reads and 𝑚 barcodes as is typical for traditional matching
algorithms

8 Chapter 2. Axe’s matching algorithm

CHAPTER 3

Indices and tables

• genindex

9

	Axe Usage
	Inputs and Outputs
	The barcode file
	Mismatch level selection
	Single barcode mode
	Combinatorial barcode mode
	The Demultipexing Statistics File

	Axe's matching algorithm
	Hamming distance matching
	Hamming mismatch tries

	Indices and tables

